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Truncated modal equations have been proposed (Gough, Spiegel & Toomre 
1975a) as a means of describing thermal convection. In  the Boussinesq approxi- 
mation these nonlinear modal equations are constructed by expanding the 
fluctuating velocity and temperature fields in a complete set of functions (or 
planforms) of the horizontal co-ordinates, and then truncating the expansion. 
The severest truncation retains but one and yields the ‘single-mode equations’. 
Within this description the convection has a simple cellular structure with a 
prescribed horizontal planform and an associated horizontal wavenumber a. 
For most planforms the single-mode equations contain inertia terms and hence 
the Prandtl number. 

In  this paper we report numerical solutions of the single-mode equations, 
considering mostly hexagonal planforms. Extensive surveys of steady solutions 
are presented here for various Rayleigh numbers R, Prandtl numbers (r and 
horizontal wavenumbers a. The dependences on R and (r at very large R are in 
satisfactory agreement with the results of asymptotic expansions. 

The wavenumber a is a parameter in this treatment and there is no accepted 
theoretical reason for clearly preferring any particular value. Reference is made 
to  available laboratory experiments on convection in seeking guidance in 
choosing a. Solutions at two values of a (for given R and (r) can replicate the 
experimental heat transport ; the lesser value of a, lying below the wavenumber 
that maximizes the heat transport, seems preferred since the mean temperature 
profile then has a nearly isothermal interior, not unlike the experimental 
profiles. This wavenumber increases with increasing R. The asymmetric 
mean temperature profiles (for hexagons) and the fluctuating temperature 
and velocity fields .of the single-mode solutions are compared with available 
experimental data, and qualitative agreement is found at moderate Rayleigh 
numbers. 
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1. Introduction 
In  a recent paper (Gough et al. 1975a, herein referred to as I) we discussed an 

approximation procedure for computing the mean quantities relating to thermal 
convection. The procedure is to decompose the spatially fluctuating part of the 
temperature and the velocity in the horizontal planform functions of linear 
theory. This leads to a system of equations for the amplitude functions of the 
expansion, which generally depend only on the vertical co-ordinate and time. 
The question that we posed was how well can one represent the gross features 
of thermal convection if we retain only a very few terms in the expansion? 

Some aspects of the results obtained to date seem to provide a fairly satis- 
factory representation of the heat transfer and mean temperature observed in 
laboratory experiments. These quantities depend explicitly on the vertical 
structure of the solution. Though the vertical structure is in turn intimately 
linked to the full spatial complexities of the motion, it appears that for some 
purposes it is possible to be inaccurate with the horizontal structure of the solu- 
tion provided that careful attention is paid to the vertical structure. 

We carried this notion to its extreme in I and retained only one term in the 
expansion. We found in some preliminary numerical integrations of the resulting 
nonlinear partial differential equations that the solutions always tended to  
steady states as they evolved in time. So we restricted ourselves to studying 
the steady equations, which had already been found in another way by Roberts 
(1966). Our main aim was to look in detail a t  the behaviour of the solutions at 
very large Rayleigh number. This asymptotic behaviour will be summasized 
briefly in 9 3. What interests us here, though, is the extent to  which solutions 
of this single-mode truncation may approximate experimental results. To 
discuss this in any detail we need more than the asymptotic results since the 
experiments do not extend to the very high Rayleigh numbers at  which the 
solutions become asymptotic. Therefore we present here numerical solutions of 
the single-mode equations for a wide range of the relevant parameters and 
compare some of their properties with the asymptotic solutions (which provides 
a check) and with the available experimenta1 results. We find that the observed 
dependence of the gross properties of convection on the governing parameters 
is tolerably represented. But this perhaps puts the matter too favourably since 
if we retain just one term in the expansion we must choose the planform rather 
arbitrarily. 

In  the single-mode equations the chosen planform is represented by two 
parameters: a ,  the horizontal wavenumber, and C, an indicator of the horizontal 
structure. We have then two parameters a t  our disposal to help us fit the data. 
Our main difficulty is that the experimental results are not extensive enough to  
guide us in the choice of a and C for a wide enough range of the governing 
parameters. This difficulty hampers us in the ultimate purpose of this investiga- 
tion, which we should recall a t  this point. 

Our aim is not to provide a basic theory but rather to find a scheme which 
will permit us to compute convective heat transfer, and perhaps such additional 
quantities as time scales and amplitudes of motion. The principal example we 
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have in mind is stellar convection, for which the parameters are not accessible 
to  laboratory simulation. There one needs an algorithm for computing mean 
quantities, and direct tests of the results are not readily found. Hence we feel 
that only a scheme that has demonstrated its usefulness for laboratory con- 
vection can be considered adequate. 

We might add, though, that in the lowest approximation this expansion 
procedure seems to provide systems which have the mathematical flavour of 
the full convection problem. The extent to  which this is true becomes clearer 
in two- and three-mode systems, which display time dependences reminiscent 
of actual convection; we plan to report on this in a later paper. Here we confine 
ourselves to  the question: is there some modest level of truncation which gives 
reasonable heat transport in highly unstable configurations ? 

2. Equations 
We consider, as in I, a fluid in the Boussinesq approximation bounded by 

two infinite horizontal plates maintained at constant temperatures. The fluid 
temperature T, which is measured in units of the temperature difference AT 
between the plates, is decomposed into mean and fluctuating parts : T = + 8, 
where the overbar denotes horizontal average. Length and time are measured 
in Units of the plate separation d and d 2 / ~ ,  where K is the thermometric con- 
ductivity, and all variables here are dimensionless. 

In  I the velocity u and the temperature fluctuation 8 were expanded in terms 
of a complete set of functions of the horizontal co-ordinates. In  the single-mode 
approximation just one term in the expansion is retained. The velocity was 
written as 

which satisfies the continuity equation, and the temperature fluctuation takes 
the form 

We note that a possible vertical vorticity term has been suppressed. The 
amplitude functions W and 0 depend on z and t alone, and the horizontaI 
planform f(x, y) satisfies 

8 = of. (2.2) 

(2.3) 

Here t is time, (z, y, z )  are spatial Cartesian co-ordinates with z vertical, and 
a is a horizontal wavenumber. These forms for u and 8 are substituted into the 
equations of motion, which are subsequently horizontally averaged, or multiplied 
by f and then averaged. The resulting equations, after elimination of pressure 
and horizontal velocity components, are 

(2.4) 

1-2 
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and 
( i - G ) F  = -%(w@),  a 

where 9 = (a2/az2-a2) and C = if”. Also R = gaATd3/~v and CF = v / K  are 
the Rayleigh and Prandtl numbers, where g is the gravitational acceleration, 
a is the coefficient of thermal expansion and v is the kinematic viscosity. These 
quantities, together with K ,  have all been assumed constant. Setting the self- 
interaction parameter C to zero reduces the equations to what are sometimes 
called the ‘ single-a mean-field equations ’ . The single-mode representation of 
rolls and rectangles has no self-interaction (C = 0) ,  but a hexagonal planform 
has C = 6-4 = 0.408, which value we shall use extensively. 

When the solutions are steady, a/at = 0 and the mean thermal energy 
equation (2.6) has a first integral 

-dF /dz+  WO = N .  (2.7) 
The constant of integration N is the Nusselt number. 

constant imposed boundary temperatures 
We assume that the boundaries are perfect thermal conductors, with the 

c 

T = F = l  at z = O ,  T = T = O  at z = l .  (2.8) 

W = = 0 = 0 at  z = 0, 1.  (2.9) 

The conditions u = 0 and B = 0 a t  rigid boundaries are represented by 

When the horizontal viscous stresses are presumed zero, as for so-called ‘free’ 
boundaries, the conditions are 

W = P W / W  = 0 = 0 at z = 0, 1. (2.10) 

Equations (2.4)-(2.6) admit the same static solutions as do the full Boussinesq 
equations, and their linear version corresponds to the usual normal-mode 
analysis of convective stability theory (Chandrasekhar 1961, chap. 2). Steady 
nonlinear solutions bifurcate from the marginally stable solutions of linear 
theory, and in I we considered only those which bifurcate from the gravest 
modes. In  these solutions W(z)  has no zeros away from the boundaries; solutions 
bifurcating from higher modes exist and we shall display one, but in general 
we are concerned only with the gravest solutions. 

A useful property of the steady solutions follows from a symmetry of the 
equations (Roberts 1966), which, in the steady case, are invariant under the 
transformation 

Z - t l - 2 ,  W - t - w ,  0 - t - 0 ,  T - t l - T .  (2.11) 

Thus if one solution is known, a second solution with the same Nusselt number 
may be generated from it, unless C = 0, when the same solution (apart from a 
horizontal translation) is generated. In  the case of hexagons the two solutions 
correspond to upward and downward motion in the centre of the cell. 

The steady equations are also invariant under the transformation z -+ 1 - z, 
C -+ - C ,  -+ 1 - F ,  W --f W ,  0 --f 0. This provides no new information and we 
shall consider only C > 0. For the gravest solutions W has only one sign through- 
out, and we take the solution with W > 0. 
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In I steady asymptotic solutions of the above equations at large values of the 
Rayleigh number were derived. The principal results are summarized in the 
next section. 

3. Summary of asymptotic properties at large R 
In  I we discussed steady single-mode solutions in the limit of large R using 

matched asymptotic expansions. Throughout most of this paper we shall deal 
only with solutions satisfying rigid boundary conditions (2.9), and we summarize 
here asymptotic results pertaining to these conditions. When C, a and (T are all of 
order unity we found 

(3.1) 
7 1nInW 

N -R- l [$WInZj i  [ 1--- 15 1nW +...I as B-+ co, 

where 

and 

k and k' are functions of cr and C, and k is tabulated in I. When (T 9 1, 
kcc ((TIC)), with a coefficient which varies weakly with C and is approxim- 
ately 1.60 when C = 6-4; hence for cr 9 1, N depends very weakly on cr. 
When cr < 1, k 2: 1.06 (l+C2)*. 

The velocity amplitude W ( z )  has a single maximum in the interior proportional 
to 

the constant of proportionality depends on a alone but was not explicitly 
determined in I. The thickness of the lower boundary layer (when C > 0) is 
of order 

(3.3) 

where h = 2 In (I /€) .  Within this boundary layer the mean temperature drops 
from unity to  approximately !F4, its value in the asymptotically isothermal 
interior, with 

(3.4) 
Also 

(3.5) 

6, - dh-Q - N-l, 

Ti/( 1 - !FJ 21 9 - A  ($ In W).S% k'/k. 

Ti  w JJT w &A), 

where S, N e t  is the thickness of the upper boundary layer, so that - dT1d.z - N 
as the upper boundary is approached. The mean temperature is not exactly 
constant in the interior, but has a small negative curvature of order &hi. 
This leads to  a bump in in the lower boundary layer whose depth ie approxi- 
mately 0.1 as R-t 00. 

As C -+ 0 this analysis is no longer valid but a separate study for C = 0 and 
a = O( 1)  (Stewartson 1966; see also Roberts 1966) shows that N is independent 
of the Prandtl number cr, and asymptotically 

N N 0-278 (Ra2 In Ra2)t as R -+ co. (3-6) 
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These results hold provided that a is of order unity. As a --f R-4 or a + R), 
(3.6) no longer holds since marginal stability is approached and N + 1. How- 
ever, when a and N are large the limit (3.1) must be modified to become 

7( 1 + 2y) lnln & 
15(1-3y) ln& 

x [l- +...I as B-+ co, (3.7) 

where W = (1 - a4/R) 9 and y = In a/ln R. Similar modifications must be made 
to  the limit (3.6) (Stewartson 1966). These modifications are valid provided that 
a < R1*7 (In R)i%; when a is even larger minor additional ammendments should 
be made to account for the contributions to N from intermediate boundary 
layers. With these modifications the asymptotic forms for N ,  for both C = 0 
and C of order unity, achieve maxima with respect to a ,  with N ,  proportional 
to  Ri'G (In B)%, at a = a, = (&R)$, as R -+ co. For these large values of a, the 
amplitudes W and O are asymptotically constant in the interior, and Ti is no 
longer constant. 

When C =i= 0, N decreases when CT does. If CT < 1,  N depends on CT, R and C 
only in the combination CTR/C. The limit (3.1) holds provided N 9 1 (i.e. 
CT B CR-l), but when r < CR-1, 

Lv N 1 + A  (cT-R/C)~, (3.8) 

where A is a function of a alone; it has a single maximum, A, = 2.496 x 
at a = a, = 2.370. In  this limit, most of the heat is transported by conduction 
and thermal boundary layers are no longer present, but extremely thin viscous 
boundary layers (6, N R-4, 6, - R-8) do exist. 

4. Survey of numerical solutions 
We have obtained numerical solutions of the single-mode equations by pro- 

cedures described in appendix A. As mentioned there, solutions of these 
equations always eventually became time independent, and thus only steady 
solutions are presented here. Further, all results unless specifically stated 
otherwise are for the rigid boundary conditions (2.9). 

A typical solution at moderate Rayleigh number with C = 6-h and a = 1 is 
illustrated in figure 1. It is similar to  the solutions with C = 0 computed by 
Herring (1964). The vertical-velocity amplitude is smooth and has a single 
maximum. In  the interior most of the heat is transported by convection since 
d p / d z  is small and WO N N [cf. (2.7)]. Thus 0 cf W-l, and deviations from this 
behaviour occur only in the boundary layers, where 0 turns over and finally 
drops to zero, and where thermal conduction is important. The meantemperature 
gradient becomes comparable with WO at the peak in 0, while it reaches its 
maximum magnitude of N at the boundaries, where the convective heat flux 
vanishes. The negative curvature of the interior mean temperature predicted 
by the asymptotic analysis for R -+ co is evident, the asymmetry of T following 
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FIGURE 1. A typical steady single-mode solution a t  moderate Rayleigh number, The 
amplitude functions W (vertical velocity) and 0 (fluctuating temperature) and the mean 
temperature are displayed as functions of the vertical co-ordinate z. Here R = 105, 
a = 1, C = 6-4 and w = 1 ;  the Nusselt number N = 3.2. The functions W and 0 are 
plotted in units of their maximum values Wo = 26-8 and 0, = 0.204. This solution, like 
most others in this paper, satisfies the rigid boundary conditions (2.9). 

t,hat of 0 (see also figure 3). With this general appearance of the solutions in 
mind, we now discuss how various features of the soIutions depend on the 
parameters a ,  R, C and (T in turn. 

4.1. Dependence on wavenumber a 
Figure 2 shows the variation of N - 1 with a for (T = 1, C = 6-4 and for different 
values of R. For each R the Nusselt number has a single maximum N ,  at 
a = a,(R), and N approaches unity as a approaches its two marginally stable 
values. If a is not between these values, no non-trivial solutions are found. In  
the range for which we computed a, (lo6 < R 6 1015), its value increases with 
R very slightly faster than R) and is 0.44 Ra a t  R = los. Similar results hold 
when C = 0 (cf. Herring 1964), at least for moderate R. This can be seen in 
figure 7, which illustrates the effect of varying C on the dependence of 
N on a. 

Velocity and temperature fields at  R = lo6 and (T = 1 for a = 2, 12 and 24 
are shown in figure 3. The first and third of these solutions have the same 
Nusselt number, N = 7.9, while the second is for a = 12 M a,, when N = 13.1. 
It is evident from figures 3(a )  and ( b )  that as a increases the position of the 
maximum of W moves upwards; according to the analysis for large R in 
appendix B of I, this maximum occurs in a boundary layer of thickness N a-l 
when a B 1.  The solution with the largest wavenumber has W and 0 almost 
constant in the interior. This property is a consequence of a being so large that 
buoyancy is balanced by viscous forces in the interior, and is characteristic of 
all solutions with (T = O(1) and a B Ri (when RB 9 1). Another prominent 
feature of the solution with a = 24 is that, in contrast to  the solutions with 
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a 

FIGURE 2.  The variation of the Nusselt number N with horizontal wavenumber a for the 
single-mode solutions is shown for various fixed Rayleigh numbers R, all at  v = 1 and 
C = 6-*. For each R the function N - 1 has a single maximum at a = a,, indicated by a 
tick mark. N -  1 vanishes as a approaches either of its marginally stable values, which are 
O(R-4) and O(R2) as R .+ 00. The dotted lines indicate which of these solutions (at any 
given R there are two) replicate the values of N measured by Goldstein & Chu (1971) in 
experiments with air (a = 0.7). The dashed curves accompanying the R = 1O'O and 1015 
numerical solutions are obtained from the asymptotic formula (3.7). 

a = 2 and 12, the interior is not isothermal. Indeed, when R-t  00 and 
N / N ,  < 1 with a > a,, nearly all the drop in the mean temperature across 
the layer occurs in the interior. 

4.2. Dependence on  Rayleigh number €2 
The dependence of N - 1 on R for v = 1 and various values of a is shown in 
figures 4(a)  and (b).  Most of the curves are for hexagons with rigid boundaries 
but we include also one case of a hexagon with free boundaries and one roll 
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FIGURE 3. These solutions illustrate the behaviour of the fields as the wavenumber a is 
varied. Each panel displays W ,  0 and as functions of z,  with W and 0 measured in units 
of their maximum values W ,  and 0,. The three solutions have a = 2, 12 and 24, and all 
are for R = lo6, C = 6-4 and u = 6.8 (water). Two of the wavenumbers (a = 2 and 24) 
were chosen to display two solutions whose common value of the Nusselt number 
( N  = 7.9) is close to that reported in laboratory experiments, while the solution a t  the 
intermediate wavenumber a = 12 is the one that maximizes the heat transport (with 
N = 13.1). (a )  W ,  = 249, 0, = 0.184, a = 2. ( b )  W ,  = 299, 0, = 0-178, a = 12. 
(c) W ,  = 115, 0, = 0.116, a = 24. 

solution with rigid boundaries. The trend is the same for all curves: N increases 
with R. 

We note that in general the curves (which are on logarithmic scales) have 
slight negative curvatures, which indicates that N is not a simple power of R 
for fixed a. This is to be expected from the asymptotic results, which show that 
a transcendental function enters the relation between N and R for a = O(1) 
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FIGURE 4. For caption to above see p. 11. 

and that further complications enter when a is sufficiently small or large. The 
termini at  low R of the curves for high a occur where we ceased the surveys. 

The envelope of the curves N - 1 11s. R as a varies is also shown in figure 4; 
it is simply N,(R) - 1. Many more solutions than are explicitly displayed in 
figures 2 and 4 were used to  compute this envelope. It too has a slight negative 
curvature, as the logarithms in the asymptotic formula for N imply. Each 
curve in figure 4 touches the envelope when (and if)  R passes through that value 
for which a = a,. 

For purposes of comparison, the dependences of N - 1 upon R at a = 1 with 
C = 0 and rigid boundary conditions and with C = 6-4 and free boundary 
conditions are also shown in figure 4. The Nusselt number for the flow with free 
boundary conditions is greater than that for the corresponding flow with rigid 
boundaries throughout the range of computation. According to  the analysis in 
I, this is true also as R --f 00. The Nusselt number for C = 6-6 exceeds that for 
the corresponding solution with C = 0 at large R, in accord with the asymptotic 
analysis, but the curves cross at a Rayleigh number of about 2 x 109. More 
detailed discussion of the dependence of N upon C is deferred until the following 
subsection. 

Typical velocity and temperature fields are displayed in figures 5 and 6 for 
various Rayleigh numbers. Because the thermal boundary layers become very 
thin as R increases, it is convenient to  plot them with respect to  a stretched 
co-ordinate ( to make their structure visible. The independent variable x is also 
shown, and gives some idea of the degree of stretching in the boundary layers. 
The most obvious trends, apart from changes in scale, are the development of 
an extensive isothermal interior and the decrease in both the interior mean 
temperature and the temperature fluctuation in the upper boundary layer as 
R increases. The bump in the lower boundary layer is barely evident at 
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R = lo5. Also typical of large R are the two maxima in 0. If R is decreased 
sufficiently the pbump disappears, the two maxima in 0 coalesce and the solu- 
tions approach the linear modes at marginal stability. 

bump and 
that of the isothermal interior increases with R, and according to the asymptotic 
analysis tends to a finite value of about 0.1 as R +- 00. Since the interior mean 
temperature tends to  zero as R +- co, this implies that F eventually leaves the 
range defined by the boundary conditions, doing so for R 2103O. This was 
raised as an issue of some concern in I. At a given value of z, the total tempera- 
ture in hexagonal flows varies in the horizontal between F- ($)4 @ and F+ 64 @ ; 
we find for example that F- ($)* 0 is negative at  some z for R 2 IOl2 when 
a = 1 or 200, and for R 2 106 when a = 20. This feature of the single-mode 
equations for C =i= 0 seems totally unphysical and indicates the need to include 
more modes at  large R.  Nevertheless, it  does not seem to produce unreasonable 
values of N .  

Typical fields for C = 0 at moderate R are provided by Herring (1964) for 
rigid boundary conditions. Where comparison is possible they agree with our 
results for C = 0 to  within 1 or 2 yo. However, the solutions at  relatively low R 
for C = 64 published by Roberts (1966) differ somewhat from ours. [For free 
boundary conditions Herring (1963) and Murphy (I971 a )  have given solutions 

The difference between the temperature a t  the bottom of the 

FIGURE 4. Variation of heat transport N - 1 with Rayleigh number R over ( a )  the range 
lO5-IO1O and ( b )  the range 1010-1016 for variety of circumstances. Each curve represents 
solutions at the fixed value of the wavenumber a indicated, except for the curve labelled 
a = a,, which gives the maximum of N - 1 with respect to a. The curve marked a, shows 
the value a, of the wavenumber at which that maximum occurs. All curves are for = 1, 
and all solutions satisfy rigid boundary conditions (2.9) except those labelled ‘free’, which 
satisfy conditions (2.10). All solutions are for C = 6-5 except those labelled C = 0. 
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FIGURE 5. Variation of fields with increasing Rayleigh number R. Two steady solutions 
are shown: (a), (b )  that at R = 105 and (c), (d )  that at R = lolo. Both solutions are a t  
a = 1.0, C = 6 4  and d = 1-0. (a) ,  (c) Amplitude functions W(5) and 0( [ )  of vertical 
velocity and of fluctuating temperature, plotted in units of their maximum values W ,  and 
0, and in terms of the stretched variable 5. ( b ) ,  ( d )  Mean temperature F(5) and inverse 
stretching function z(5) (see appendix A). The solution at R = lo6 is also displayed 
unstretched in figure 1. The extent of the stretching is suggested by 6, and a,, the distances 
of the lower and upper peaks of 0 from their nearest boundaries. (a ) ,  ( b )  W ,  = 2.68 x lo1, 
0, = 0.204, N = 3.19, 6, = 2.57 x lO- l ,  6, = 1.43 x lo-’. ( c ) ,  (d )  W ,  = 4.52 x lo3, 
0, = 0.203, N = 4.78 x lo1, 13, = 1-85 x lo+, 6, = 7.05 x 

for G = 0, and Murphy (1971b) has found some for C + 0 ;  our agreement with 
these results is satisfactory.] 

Figure 8 also depicts a solution for which W and 0 vanish in the interior. 
In  all solutions of this type, we found that W and 0 vanish together. It can be 
shown that at such points P W / W  must vanish too. In  principle, these overtone 
solutions could be compounded from fundamental solutions at  appropriate 
(lower) Rayleigh numbers and wavenumbers, with suitable combinations of 
rigid and free boundary conditions. The example of a vertical overtone in 
figure 8 is essentially a combination of the solution a t  R = Q x 1O1O, a = 2.885 
with W ,  0 > 0 subject t o  rigid conditions at the lower boundary and free 
conditions at the upper one and the solution derived from it by the transforma- 
tion (2.11). I n  this case the interior boundary layer in is centred at  z = 4; 
had the boundary conditions at the top and bottom not been the same it would 
have occurred elsewhere. The interior boundary layers are all evenly spaced 
when the number of internal zeros of W exceeds one only if upper and lower 
boundaries are both free. It seems likely that the vertical overtone is unstable. 

Detailed comparison of the R and a dependence of these numerical solutions 
with the predictions of our asymptotic analysis will be made in appendix B. 
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FIGURE 6. Similar to figure 5, again with C = 6-a and CT = 1.0. (a), ( b )  Solution a t  R = 10l6 
with a = 1-0, which should be compared with the solutions in figure 5 ;  here Wo = 5.05 x 106, 
0, = 0.226, N = 6 . 0 8 ~  102, S, = 1 . 6 3 ~  (c) ,  (d) Fields of a 
vertical overtone solution a t  R = 1010 with a = 5.37; W,, = 5 . 9 4 ~  los, 0, = 0.125, 
N = 4 . 9 6 ~  lo1. 

and 8, = 4 . 2 6 ~  

4.3. Dependence on the interaction parameter C 

The dependence of N on C, though never very marked, is qualitatively different 
in different ranges of R and a. For R = lo6, N is a monotonically decreasing 
function of C for fixed a > a, w 10. For R = lo6 and a = 5, N has a maximum 
with respect to  C at C z 0.2. Such details can be seen in figure 7. 

As R increases above 106, a change in the C dependence occurs. For R- 1Olo 
and a 2 a,,, N is maximum a t  C = 0.2, a value which is insensitive to R, and 
this is illustrated in figure 8 for R = 10l2 and a = 800. For very large values 
of R and a z 1, N again has a maximum with respect to C but at a much lower 
value, as the curves for R = 1Ol2 and lozo in figure 8 show; the appearance of 
a distinct cliff near C = 0 with increasing R is clearly evident. Further, the 
filled circles indicate the values given by the asymptotic formula (3.1) for 
C $. 0 evaluated at R = lozo; the value for C = 0, based on (3.6), is shown by 
a filled triangle. Thus the asymptotic results display a behaviour resembling that 
of the numerical solutions. 

These variations with C are minor and show that, for C = O(1) and not too 
close to zero, the solutions are not sensitive to the choice of C. Though we can 
discern no clear pattern from these variations, they do indicate that it is not 
easy to  tell in advance what the strengthening of nonlinearity will do to heat 
transport. We have (except at  lower R) confined our calculations to  C 6 6-4 
since, as has been demonstrated by L. Baker (private communication), higher 
values cannot be attained by planformsf satisfying (2.3) in the entire x, y plane. 
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FIGURE 7. The variation of the Nusselt number N with the wavenumber a for various 
fixed values of C,  all at R = 106 and CT = 6-8 (water). Realizable planforms lie in the range 
C = 0 (for rolls) to C = 6-6 = 0.408 (for hexagons); larger values of the interaction 
parameter C are included here to demonstrate the behaviour of the numerical solutions. 
At  this moderate Rayleigh number, N is maximized by a C = 0 solution. 

FIGURE 8. Variation of N/No with C,  where No is the maximum of the Nusselt number with 
respect to C .  All solutions are for CT = 1.  The prominent cliffs in the solutions with a = 1 
and R = 10l2 and 1020 (which have No = 140 and 7820) are characteristic of all solutions 
at  high R with a of order unity. The smoother behaviour of the solutions with a = 800 
and R = 1012 (No = 723) is typical when a 2 a,. For comparison, asymptotic results are 
presented for a = 1 and R = 1020. The circles were computed from (3.1) and the triangle 
from (3.6). The formula (3.1) increases monotonically as C decreases. The maximum in 
N occurs near C = 0, where (3.1) is not valid. The value No = 7830 was chosen for the 
asymptotic points to give agreement with the numerical results at C = 0.1. 
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U 

FIQURE 9. The heat transport N-1 as a function of the Prandtl number u for several 
fixed values of R. In  all these numerical solutions a = 1 and C = 64. When u 5 
N - 1 depends on CT and R only though the combination uR, and when N -  1 5 0.1 this 
dependence is approximately N - 1 cc ( U R ) ~ .  The two curves at R = lo6 demonstrate the 
effects of rigid and free boundary conditions: N - 1 is almost independent of the boundary 
conditions at low u in the quadratic regime, but the solutions differ noticeably when u is 
of order unity. All other solutions satisfy the rigid conditions (2.9). The short-dashed 
curves represent the asymptotic formulae (3.1) and (3.8) for R = los. 

a 

FIGURE 10. The variation of heat flux with horizontal wavenumber a at low Prandtl 
numbers u. Asymptotic analysis (at high R and low (r) predicts that ( C / U R ) ~  ( N -  1) = A  
should be a function of a alone, and the continuous curve shows its behaviour. The discrete 
points plot the results of numerical solutions for hexagons at R = lo8 with u = 
(triangles) and u = 10-6 (circles). The dashed vertical line locates the wavenumber 
a = 2.370, which maximizes A in the asymptotic solutions. The numerical results lie 
somewhat below the asymptotic limit because R is only lo6. For R 2 lo* the numerical 
and asymptotic results at a = 1 differ by less than 0.5%. 
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4.4. Dependence on Prandtl number u 
The most significant difference between the solutions with C + 0 and the mean- 
field solutions (C = 0 )  is the dependence on Prandtl number. For fixed R and 
a, N increases monotonically with u for C += 0. The variation with (T is marked 
for u < 1 but becomes very slight when u > 1. As u + co, N approaches som: 
constant value, a,s the asymptotic studies indicate. Numerical solutions for (r 

as large as 1015 confirm the behaviour at large u and show that, for u 2 3, N is 
within 1 % of its value at  u = 03. 

The asymptotic analysis predicts that, when (T Q 1, N is a function of UR 
and does not depend on u and R separately, which means that the heat flux is 
independent of viscosity. This is borne out by the numerical solutions, some of 
which are depicted in figure 9 together with the asymptotic results for R = IOl5. 
Had these curves been plotted against UR instead of u they would have been 
found to  be coincident for u < 1 ; the relative deviation from this common curve 
a t  moderate (T depends on (T but not on R, and is less than about 10% for 
(T < 10-2. 

For u small and uR/C not large, so that N - 1 is small, the Nusselt number 
variation is given by (3.8). The coefficient A in (3.8) varies weakly with R, and 
approaches a limit as R -+ co which depends only on the wavenumber and agrees 
with the values derived from the matched asymptotic expansions to within the 
numerical accuracy. Thus it is evident that the form of the dependence of N on 
a in this limit becomes independent of U, R and C at sufficiently large R. This 
is illustrated in figure 10 at R = 106 together with the limiting form (3.8) 
derived from the asymptotic analysis. The discrete numerical data presented 
lie below the limiting curve because they were computed at  only a modest 
Rayleigh number. The value of the wavenumber a, which maximizes N is 
insensitive to  R. 

5. Comparison with real convection 
Having described the nature of the single-mode numerical solutions, we now 

assess their relevance to actual convection. In  comparing the global properties 
of the solutions with laboratory experiments at given R and U, we must specify 
a and C (and, strictly, the choice of vertical harmonic). Within the framework 
of the single-mode truncation, we have found no independent theoretical reason 
for preferring one horizontal wavenumber to another. In  line with previous 
suggestions (e.g. Malkus 19543) one might choose a to  maximize N .  This kind 
of device may ultimately prove to have merit, but at present there are not real 
grounds for adopting it. We turn instead to  laboratory convection for guidance. 
Should an adequate procedure for the choice of a be suggested by the laboratory 
experiments, in the sense that at  least the mean gross features of real convection 
are being reproduced by these solutions, we would then be encouraged to use 
similar procedures for predicting convective processes in parameter ranges 
beyond laboratory experience. 

A difficulty with this approach is that the majority of experiments that 
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measure N at large R are not concerned with the direct determination of scales 
of motion which we might associate with a. Some help is provided by the 
experiments which study how the cell shape, the wavenumber and the time 
dependence of the convection vary with R and r~ (as recent examples, see 
Krishnamurti 1973; Busse 85 Whitehead 1974), but heat-flux data there is 
available only for moderate values of R. Of course, for R 5 2.2 x 104 and (r > 1, 

2 F L M  79 

FIGURE 11. Comparison of single-mode results with laboratory experiments in air 
(a = 0.70). Solutions with C = 6-i  were constructed to replicate the Nusselt numbers 
reported by Deardorfft Willis (1967) at three values of the Rayleigh number R ;  we chose 
solutions at the lower of the two possible wavenumbers a. The open circles denote the wave- 
numbers of these numerical solutions, along with W,,, (the maximum of W with respect 
to z )  and Omin (the minimum of 0). Deardorff & Willis provide wavenumbers a below 
which 90 % of the heat is transported, and these are shown as filled squctres. Their values 
for the r.m.s. vertical velocity and fluctuating temperature at mid-layer are also so plotted 
(all labelled D & W). Similar velocity and temperature measurements by Fitzjarrald (1975) 
are shown by the broken curves (labelled F). The long-dashed curve denotes the wave- 
numbers a of our solutions used to replicate N in the experiments of Goldstein & Chu 
(1971), as indicated in figure 2. 
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\ R 104 105 106 107 
a \  
0.025 1.57* 2-83 5.12* - 

- - 10.9 
(mercury) 

0.7 (air) - - 7.14 14.1 

0.8 2.28 4.35 8.28 15.8 
(helium) 

6.8 2.41* 4.14 8.27 - 
(water) 

- - - 14.6* 

- 4.49* 8.52 16.2 

18 (oil) - - 9.78 18.8 

200 (oil) 2.45 4.68 8.93 - 

108 

- 

- 

27,7 

30.1 

- 

28.7 

30.7 

36.0 

___ 

108 

- ROSSBY (1969) 

- GLOBE & DROPKIN (1959) 
N = 0.147 RwZs7 

N = 0-051 Rw3" 

- GOLDSTEIN & CHU (1971) 
N = 0- 123 RO.294 

57.3 THRELFALL (1975) 
N = 0.173 ROaso 

- ROSSBY (1969) 

56.4 GARON & GOLDSTEIN (1 973) 
N = 0.13 1 RO.300 

N = 0.130 R Q * @ ~  
- CHU & GOLDSTEIN (1973) 

N = 0.183 Re278 

- SOMERSCALES & GAZDA (1969) 
1L' = 0.196 R0.283 

- ROSSBY (1969) 
N = 0.184 ~0.281 

TABLE 1.  Nusselt numbers N reported from various laboratory experiments for selected 
Rayleigh numbers R and Prandtl numbers c. These N were determined from the inter- 
polation formulae provided by the experimenters; asterisks denote which entries for 
N li3 slightly outside the range of R of a given experiment. The data are sparse, but there 
is a distinct decrease in N with decreasing U. 

a regime in which the observed motion is two-dimensional, the scales are fairly 
well determined (as summarized by Willis, Deardorff & Somerville 1972). But 
this does not take us into the regimes of higher R we need. In  the face of the 
scarcity of such explicit information we shall simply pick those values of a that 
give the right N for the available measurements, and then inquire whether the 
remaining features of the solutions agree with the experimental results. 

A primary group of convection experiments exists that provides the de- 
pendence of N upon R and (T. Rossby (1966, 1969) has contrasted his own 
extensive experiments using mercury ((T = 0.025), water ((T = 6.8) and a silicone 
oil ((T = 200) with those of previous workers including Schmidt & Saunders 
(1938), Malkus (1954a), Silverston (1958) and Globe & Dropkin (1959). Though 
these different experiments tend to have only limited overlap in both (T and R, 
Rossby points out the fair variation in the reported Nusselt numbers N .  Other 
recent convection experiments that provide data on heat transport are those of 
Deardorff & Willis (1967), Goldstein & Chu (1971) and Fitzjarrald (1975) with 
air (cr = O.?) ,  those of Threlfall (1975) with gaseous helium a t  low temperature 
((T = 0.8), those of Somerscales & Gazda (1969), Chu & Goldstein (1973) and 
Garon & Goldstein (1973) with water and those of Somerscales & Dropkin (1966) 
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with different silicone oils. Some of these experiments have obtained temperature 
profiles in addition to  N ,  and a few have even measured velocity fields. 

Table 1 displays the Nusselt numbers determined in some of the more recent 
experiments, presented for a selection of values of u and R. Few of these in- 
vestigations extend beyond R = lo8, and the data are quite sparse at low u. 
Still, this table illustrates two points. First, N appears to decrease with de- 
creasing B when R is fixed. This is certainly true of the series of experiments by 
Rossby, and his measurements of N correlate well with the results of others. 
Second, the heat-transport data are frequently presented for fixed B in the form 
of simple power laws N = aRB. With the exception of Globe & Dropkin, all 
recent experimenters report values of the exponent /3 in the range 0-26-0-30; 
higher values have been reported also by earlier workers (e.g. Malkus 1954a). 

As figure 2 (with u = 1 )  suggests, the range of N available from the single- 
mode solutions readily encompasses the Nusselt numbers of Goldstein & Chu 
(1971) for air (u = 0.7) for R = 106-108. We have indicated with dashed lines 
the two values of a a t  each R for which the experimental and numerical con- 
vective transports are identical; the two choices of a lie on either side of a, and 
increase with increasing R. Reference to the mean temperature field p(z)  makes 
us prefer the smaller wavenumber since then the interior p is reasonably iso- 
thermal, in accord with the experiments. The fields displayed for u = 6.8 and 
R = 106 in figure 3 make this preference clear, for there the a = 2 and 24 soh- 
tions have identical N (7.9, as opposed to N ,  = 13.1 at a = a,, = 12), but only 
for the smaller a is p(z) somewhat like those in the corresponding Chu & Gold- 
stein (1973) experiments with water. [Incidentally, these solutions in figure 3 
had wavenumbers chosen, as round numbers, to obtain an N near the value of 
8-3 of Rossby (1969) or the value of 8.5 of Chu & Goldstein (1973). Better 
estimates of a can be read from figure 7.1 Thus, matching the Nusselt numbers 
and the general appearance of p(x) leads us to  choose the lower of the two 
wavenumbers that reproduce N ,  at least in the moderate range of R attained 
in laboratory experiments. 

The form of p(z) deserves comment. It has been suggested in the experimental 
papers that the mean temperature profile is asymmetric about the midplane, 
that a weak reverse gradient in T occurs in the nearly isothermal interior, that 
the interior value of F differs from 4 and that bumps exist in Fnear the walls. 
Somerscales & Dropkin (1966) find all four features, Somerscales 8: Gazda (1969) 
report less pronounced asymmetries and weaker bumps, as do Chu & Goldstein 
(1973), while Rossby (1969) expresses concern that his p is not equal to  4 at 
z = $. On the other hand, Goldstein & Chu (1971) report none of these features 
and Deardorf€ & Willis (1967) question experiments that reveal them. As our 
various p(z) profiles illustrate, the hexagon solutions are typically asymmetric 
and possess a bump, and these features are a natural consequence of three- 
dimensional cellular motion, with upward and downward velocities of unequal 
amplitude. However, our bump is too pronounced, and the nearly isothermal 
interior values of our lie outside the range of midplane values (roughly 
0.45-0-55) reported from experiments. Clearly, just changing the sign of W and 
0 in our hexagons reflects the asymmetries of the profile about the midplane 

2 - 2  
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while retaining the same N .  It is tempting t o  conjecture that in some cells the 
flow may be upward in the middle and in some downward at a given instant, 
so that the globally averaged p might be approximated by averaging our two 
solutions, but that possibility cannot be dealt with in a single-mode treatment. 
Of the experimentally determined mean temperature profiles, the (time-averaged) 
profile of Thomas & Townsend (1957) compares favourably with the p in our 
figure 3 (a )  ; however we must treat this agreement with some caution, for the 
authors suggest that a single large-scale convection cell may have dominated 
the flow, and so their results may be atypical. 

profiles have a 
simple inverse-power-law dependence on the distance z from the wall, as pre- 
dicted by some theories (Priestley, 1954 chap. 4; Malkus 19543; Kraichnan 
1962). Although some authors (e.g. Somerscales & Dropkin 1966; Goldstein & 
Chu 1971 ; Chu & Goldstein 1973) have managed to fit such a simple formula to 
their data, it appears that the functional dependence is really more complicated, 
as has been pointed out by Somerscales & Gazda (1969)’ who found better 
agreement with a theory due to Howard (1966). We find that OUT p in the 
boundary layers, when measured in units of the mean temperature drop across 
the appropriate boundary layer, deviates from the experimental profiles by no 
more than the difference between the experiments. The absolute values are not 
good, however, because our interior values of 

We come now to some subtler consequences of choosing the wavenumber a to 
duplicate the experimental iV. The work of Deardorff & Willis (1967) is par- 
ticularly relevant, for they made simultaneous velocity and temperature 
measurements of convection in air, undertook spatial spectral analysis, and 
computed various correlations among the data. More recently, Fitzj arrald 
(1975) conducted a similar investigation, with the advantage that he could vary 
the aspect ratio of the apparatus. We have constructed solutions with u = 0.70 
which duplicate the Nusselt numbers inferred by Deardorff & Willis a t  their 
three distinct values of R. The wavenumbers a of such solutions (using the lower 
of the two possible a’s) are shown in the compound figure 11 as open circles; 
each such a has a range of uncertainty (indicated by vertical bars) which reflects 
the uncertainty in the experimental values of N .  Now what bearing do these 
a’s have on experimental measures of horizontal scale ? 

Deardorff & Willis and Fitzjarrald present time-averaged (arithmetic mean) 
Fourier spectra of the spatial fluctuations in velocity and temperature measured 
along a horizontal line. The spectia at  different Rayleigh numbers are too 
dissimilar for peaks to be unambiguously associated. However, the data of 
Deardorff & Willis suggest that there are some scales which increase with R and 
others which decrease. Fitzjarrald looked also at the W ,  0 cospectra before time 
averaging end selected the wavelengths of the three highest peaks. This was 
done for many records and a distribution function for these wavelengths was 
constructed. It was found that, when the aspect ratio of the apparatus was 
large, the peaks in this distribution function moved to larger wavelengths as 
R increased. However, when the aspect ratio of the apparatus was reduced in 
onedirection and thespectra measuredlongitudinally, thereversetrendwas found. 

There is also some discussion on whether the experimental 

are incorrect. 
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It is difficult to  draw general conclusions from these analyses, especially since 
the available data are sparse. What is clear is that there are several important 
horizontal scales of motion evident in the spectra, and we are attempting to 
model the flow with just one. Perhaps the most relevant experimental measures 
with which to compare this are the values obtained by Deardorff & Willis of 
the scale in the covariance of W and 0 above which 90 yo of the heat is trans- 
ported in the interior ( z  = 0-5). It might be expected that the wavenumbers 
corresponding to  these length scales are representative of, though they would 
underestimate, the eddies that dominate the transport of heat. In  representing 
heat transfer by a single mode, we associate the preferred a with the energy- 
transporting scales of motion. We display these experimental wavenumbers as 
filled squares in figure 11. These experimental measures of horizontal scale are 
rather different in magnitude from those of our N-duplicating solutions. What 
agreement exists is just that the various wavenumbers increase with R in 
approximately the same manner. 

The data of Deardorff & Willis and Fitzjarrald also permit us to compare our 
A uctuating vertical-velocity and temperature amplitudes with the corresponding 
experimental r.m.s. amplitudes. Plotted in figure 11 are W,,, and Omin, the 
maximum and minimum with respect to z of W and 0 in our solutions, and the 
maxima and minima of the analogous experimental profiles of the r.m.s. 
fluctuations. The slopes of the curves with R are similar. The discrepancies 
between theory and observation are of the same order as the differences between 
the results of the two sets of experiments. Further, the product of our W,,, 
and Omin (which is effectively N in the interior) is consistently lower than the 
products of the corresponding r.m.s. fluctuations. This arises because perfect 
correlation between velocity and temperature fluctuations is built into the 
single-mode representation, whereas the real flows do not achieve this : Dear- 
dorff & Willis find correlations of order 0.5, Fitzjarrald’s are of order 0.8. 

The z dependence of the r.m.8. velocity and temperature fluctuations is not 
in agreement with our W and 0. Garon & Goldstein (1973) find that the vertical 
velocity varies as the one-third power of distance from the boundary, contrary 
to our predictions in either boundary layer (cf. (4.17) and (4.18), and figure 1 
of I) .  Although the shapes of the experimental temperature fluctuations 
measured by Rossby (1966) and Somerscales & Gazda (1969) superficially 
resemble 0, the maxima of 0 are too large by a factor of 2. 

It would be unreasonable to expect a description based on only a single 
horizontal length scale to reproduce faithfully the statistics of a turbulent flow. 
Nevertheless, we do find that, if we choose the value of a that reproduces the 
correct Nusselt number, this value at  least varies with R in a similar fashion 
to  the mean wavenumber of the ‘eddies’ carrying the heat. Furthermore, the 
velocity and temperature fluctuations we predict with that a are not far re- 
moved from the corresponding actual A uctuations. The experimental data 
available for such comparisons are very limited, and at the admission of some 
of the aut,hors not wholly reliable, so that we cannot make a clear statement of 
the success of the present effort. Even if it transpires that our truncated modal 
description of convection is wholly inadequate, more sophisticated theories that 
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will no doubt appear in the future can be adequately tested only if a greater 
body of data becomes available. 

Finally we should examine how N varies with u, and what is implied about a. 
As table 1 shows, the experimental data at  low u are few; likewise the grid of 
numerical solutions presented here is rather coarse in u. But such comparisons 
as are possible are comforting to us. For fixed R the heat transport reported in 
experiments appears to  decrease systematically with u, as does that in our 
hexagons for fixed (R, a )  in figure 9. For example, at R = lo6 the experimental 
N - I decreases from 6-1 to 4-1 as u falls from 0.70 to 0.025, a reduction of about 
30 yo ; the numerical N - 1, for the arbitrary a of 1 in figure 9, is decreased by a 
similar percentage, from 4.7 to 3.1. This suggests that the ‘preferred’ a is rela- 
tively insensitive t o  u, a t  least over this narrow range of 6. 

6. Conclusion 
The upshot of these calculations is that the single-mode results, with judicious 

choices of a and C, can be made to reproduce the observed heat transport and 
some aspects of the behaviour of the temperature profiles. This is not a great 
tribute to  their validity since other aspects of the flow are not well modelled 
and the experiments are not of wide scope. In fact, we have already pointed out 
a failure of the single-mode results a t  high values of R : that solutions exist with 
temperatures which are in places outside the range defined by the boundary 
conditions. This is a serious flaw and arises from having too crude a representa- 
tion of the advection terms. In  an intensely turbulent flow of a Boussinesq Auid 
with constant transport coefficients it is reasonable to  expect the mean tempera- 
ture of the isothermal interior to lie midway between the boundary values. 
However we do not achieve this, since our single-mode solutions with C 4 0 
are highly asymmetric when OR is large. A more suitable representation of the 
flow might be provided by a two-mode solution constructed from two similar 
planforms with the same wavenumber, and representing, for example, hexagons 
with motion upwards and downwards in the middle respectively. We have 
obtained some results with such two-mode hexagons for R < lo7 which show 
that solutions exist where the upward and the downward motions are of com- 
parable amplitude, and in the isothermal interior assumes a value of about 
0.5. The heat transport is very close to that predicted by a single-mode solution 
a t  the same wavenumber. 

Another source of concern about the single-mode equations is the behaviour 
of N with R as R -+ GO. As we discussed in I, the steepest variation that can be 
achieved asymptotically by the single-mode solutions is N N Ri%(ln R)*, 
which falls somewhat short of the widely believed, but experimentally unveri- 
fied, R) variation or the even more rapid variation predicted by Kraichnan 
(1962). It does appear likely, however, that we can reproduce the R) behaviour 
by using a representation with a sequence of modes interacting only through 
the mean temperature field (reported by Spiegel1971), each mode in the sequence 
having a wavelength of the same scale as the boundary layer produced by the 
one before it,. Such a sequence was also used by Chan (1971) in his heat-flux 
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maximization study a t  infinite CT. If the modes interact directly through the 
fluctuation advection terms, it may be that the asymptotic dependence is 
steeper. However, for the present we seem able to reproduce the existing experi- 
mental results for R up to about 1012 with the single-mode approximation since 
N cc R0.28 appears to be the best current representation of the experiments, with 
a spread in the reported values of the exponent of about 

The fashion in which we must choose a and C to predict the heat ffux has not 
been significantly elucidated by the comparison with experiments. It is clear 
that for large R the motions are three-dimensional and this suggests that 
C + 0. Moreover for C not close to zero N is not sensitive to C. By its definition, 
C = O ( l ) ,  and the general appearance of high Rayleigh number convection 
suggests that C = 6-h (hexagons) is a reasonable choice. 

The selection of the horizontal wavenumber a is more difficult since it depends 
significantly on R and possibly on CT. The rough indications from the com- 
parisons we have made in figures 2 and 11 are that a is close to but somewhat 
less than the value that maximizes N .  Since the maximizing value varies like 
Ra we suppose that the optimal choice of a does also, but this awaits verification. 
As to the dependence of the preferred a on CT we have no real guidance from the 
experiments. 

It is interesting that similar difficulties are found in direct numerical simula- 
tions of convection. Most of that work is confined to  two-dimensional studies 
(as discussed by Lipps & Somerville 1971 ; Moore & Weiss 1973), except at very 
modest R. These studies effectively impose a wavenumber for the rolls by the 
placement of end walls, though L. Bauer & E. L. Reiss (private communication) 
have been attempting to minimize this by using very large aspect ratios. Here 
too one does not know how to choose a ,  except by reference t o  experiments. 
Experimental values of a are available at large CT for R 5 2-2 x lo4, where the 
motion occurs as rolls, and when these are used in the simulations the heat 
transport is in good agreement with the experiments (Willis et al. 1972). But 
otherwise the choice of a is not apparent. 

Perhaps the most important feature of the single-mode solutions is their 
Prandtl number dependence when C + 0. In  particular, we predict a decrease 
in the Nusselt number N as CT decreases below unity, in the manner shown in 
figure 9. Kraichnan ( 1962) had previously concluded from a mixing-length 
approach that N should decrease with CT. Similar results have been obtained at  
very low CT (Ledoux, Schwarzschild & Spiegel 1961 ; Spiegel 1962). However, 
such reductions in heat transport with decreasing CT have not been seen in the 
two-dimensional numerical simulations (see Veronis 1966 ; Moore & Weiss 1973), 
though there is some evidence for it in the three-dimensional work of Veltish- 
chev & 2elnin (1975). Further, this behaviour of N is a t  variance with the 
results of Jones, Moore & Weiss (1975), who studied axisymmetric convection 
in an upright circular cylinder with stress-free boundaries. This geometry per- 
mitted them to  consider three-dimensional motions while still dealing with only 
two spatial independent variables. They found that N in fact increased slightly 
with decreasing CT at moderate R. 

The source of the discrepancy appears to be the profound change in the flow 

0.02. 
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field revealed by the two-dimensional computations as u decreases. At low u 
the flow is such that the vorticity is constant on streamlines, as is the case for 
rolls. This has the effect of annihilating the nonlinear advection term in the 
momentum equation and allowing the velocities to build up to very high values, 
much as in a fly-wheel. These fly-wheel solutions have a horizontal structure 
very different from that of a single-mode planform f satisfying (3.1) for this 
axisymmetric problem (for which C = 0.18). Although it is likely that fly-wheel 
solutions are unstable to  three-dimensional disturbances and hence might not 
be realized in practice, they do provide fair warning of flows with special hori- 
zontal structures tha t  behave quite differently at low u from the ones we have 
considered. 

It is perhaps unusual in a classical subject such as this to find that one cannot 
test theories (if they may be so called) because of insufficient data. But the 
experiments are difficult, especially at high R, though Threlfall (1975) has 
recently achieved R 2: loll using helium at a low temperature. His results are 
limited to heat-flux measurements and the aspect ratios are rather small. But 
the means for measuring fluid velocities and temperatures in such conditions 
are available and aspect ratios can be improved. We strongly urge experimenters 
to extend this work, and also to undertake studies at low Prandtl numbers, 
available with liquid metals, to resolve the issue concerning fly-wheel solutions. 

One reason for hesitation to enter the high R regime experimentally may be 
the risk of encountering wide variations in T and hence noticeable variations 
in viscosity and conductivity. Such effects are normally excluded from the 
simplest theories and there may be reluctance to  lose contact with the theory. 
However, the inclusion of variation of the transport coefficients in the calcula- 
tions is not an essential difficulty (see appendix C). Similar remarks apply to  
deviations from what are normally considered ideal boundary conditions. The 
ultimate problems to  be solved contain these difficulties and they should not 
deter the experimental work that is urgently needed. 

The needs we refer to  are of those who must estimate convective transfer in 
attempting to  deal with fluid-dynamical problems in geophysics or astrophysics. 
This comes up in so many problems that extreme measures must be taken. The 
present inability to solve the relevant full equations, or at  least to find the right 
kind of solution, in the appropriate parameter ranges has forced many workers 
to  renounce the attempt and proceed in any way that seems feasible. We are 
perhaps part of the way into this camp, but would at least like to keep things in 
hand by experimental tests whenever possible. We believe that in this respect 
the procedure we have explored may have advantages over the more usual 
mixing-length theory. On the other hand, the amount of work required to realize 
any such advantage is far greater than in mixing-length theory, and we freely 
admit that our caseisnot yet a strong one. What we have exhibited here, however, 
is needed as an introduction to the higher ltpproximations to be presented later, 
which show time dependence and other peculiarities of real convection. 

The major part of the numerical studies were carried out in New York at  the 
Goddard Institute for Space Studies (GISS). During much of this effort J.T. 
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was at  GISS and in the Department of Mathematics, New York University, and 
D.O.G. was at  GISS and at the Courant Institute of Mathematical Sciencee, 
New York University; J.T. and D.O.G. held NAS-NRC fellowships while at  
GISS. We are also grateful for the financial support to the National Science 
Foundation, most recently under NSF Grants MPS 75-05660 and DES 74-14439, 
and to  the National Aeronautics and Space Administration under NASA Con- 
tract NGL 06-003-057. 

Appendix A. Numerical methods 
This appendix outlines the numerical procedures used in integrating the 

system of single-mode equations (2.4)-(2.6), subject to the boundary conditions 
(2.8) and (2.9) or (2.10). The same techniques may also be used when dealing 
with the more complicated multi-mode equations given in I. These parabolic 
systems of nonlinear partial differential equations, with time t and the vertical 
spatial co-ordinate z as the independent variables, are solved by finite differences. 

When R or a is large, or v is small, the solutions tend to have boundary layers. 
To resolve their structure adequately a non-uniform spatial mesh in z is helpful. 
We have therefore introduced a stretched independent variable <(z)  in [O, I] 
with respect to which the M grid points ( M  is typically about 300) are evenly 
spaced; < is chosen such that boundary-layer regions occupy a suitable pro- 
portion of the domain of g. The stretched variable is a monotonic function of 
the original independent variable z. When only simple boundary layers in the 
neighbourhood of z = 0 and x = I are encountered, explicit functional forms 
for the mapping c(z )  can be chosen, with scaling parameters that are determined 
from approximate solutions of the  basic equations. This method becomes 
laborious when nested boundary layers of different thicknesses are encountered, 
when for example R is large and v is small, or when internal boundary layers 
associated with vertical harmonics arise. We therefore devised a more direct 
method for determining the stretched variable [ ( z ) ,  based on minimizing esti- 
mates of the truncation error introduced by differencing. One such error 
estimate is the integral of the sum of the squared curvatures with respect to 
6 of all the variables in the basic problem, including the original independent 
variable z ; the EuIer equations determining the minimum, with their natural 
boundary conditions and an integral constraint defining the range of 6, are 
solved in conjunction with the basic system of differential equations. Details of 
stretching techniques, based on either explicit functions or various functionals 
of the solutions, have been presented elsewhere (Gough, Spiegel & Toomre 
1975b). 

Difference equations were constructed by representing all spatial derivatives 
by centred differences of second-order accuracy and representing time deriva- 
tives in a way that gave consistent emphasis to all terms in the equations, 
whether linear or nonlinear, at each time level. Implicit time schemes are 
necessary when dealing with highly stretched spatial grids because the diffusive 
stability criterion (At < 0 [(Az,,,)~J) would otherwise impose prohibitively small 
time integration steps At. Hybrid multi-level time schemes that treat only the 
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linear terms implicitly, to relax the diffusive criterion, and compute the non- 
linear terms explicitly introduce phase differences between the fluctuating 
advective terms and the linear terms which can result in spurious oscillations 
(whose properties depend on the grid spacing). 

The nonlinear difference equations that result from our implicit time schemes 
are solved at  each time step by a Newton-Raphson iteration (cf. Henrici 1962, 
p. 366), leading to  the repeated inversion of a large ( M  x M )  block bidiagonal 
or tridiagonal matrix. This procedure can be made definitive by noting that 
(2.4)-(2.6), plus any additional equat'ions resulting from a functional form for 
the stretching, can be written as a set of J equations of the form 

where Nu is a differential operator in 6 and A is a constant matrix all of whose 
elements are either 0 or 1. The solution vector u (6, t )  can be represented on a 
finite-difference grid of M spatial points at  each time level n by the discrete 
variables uTa, where the independent variables are similarly 6 = C?, t = tn, 
i = 1,  ..., M ,  n > 0. The finite-difference form of (4.1) then becomes 

where the time step Atn = tn--tn-l and Nai is the difference operator obtained 
from Ja by replacing spatial derivatives by centred differences of second-order 
accuracy. The diffusive criterion is relaxed for implicit time schemes with the 
parameter q in the range [i, 11. 

To advance the solution in time from the (n- 1)th to the nth time level, we 
solve a system of nonlinear algebraic equations for uEi in terms of uE,rl, which 
may be formally written as 

a, f i , y = 1, ... J ,  (A 3) 
If n = 1, u:c1 represents the initial conditions, and the boundary conditions 
(2.8) and (2.9) or (2.10) at 6 = 0, 1 (or at z = 0, 1)  determine gal and Fan{. 
The nonlinear equations (A 3) are solved readily by Newton-Raphson iteration, 
in which the Lth iterate of uEi is written as 

a ~ ' i L  = un,L-l a3 +SUE;% 

and it is assumed that I S U ~ ~ I  < Substituting (A4)  into ( A 3 )  and 
expanding the resulting equation to first order in Su2iL yields the linear system 

Fai(u?j, UP;') = 0, i,j, k = 1,  ..., M .  

(A 4) 

For integrations of the time-dependent equations the iterations were started by 
setting uZ;l = uzcl, and were terminated when for some specified number E 

The rate of convergence of this Newton-Raphson iteration is quadratic, and it 
was usually possible to  obtain solutions with E = 10-14. 
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Several different decompositions of the form (A 1) were used, the JC being 
either all first-order or all second-order operators (with J = 8 or 4 for the 
single-mode equations when additional stretching equations were not involved). 
The coefficient matrix of u$= in (A 5 )  which must be inverted is then either 
block bidiagonal or block tridiagonal and order M x M ,  with blocks of order 
J x J. Some care must be taken in performing the inversion of these large 
matrices to ensure that numerical error is kept small. 

The steady version of the single-mode equations (2.4)-(2.6) was solved in the 
same way. In cases where an eigenvalue is present, either because the mesh- 
stretching procedure requires one or when the integrated form (2.7) of the energy 
equation is used in place of (2.6), simultaneous iteration of the solution vectors 
and the eigenvalues can be performed with a small modification to the above 
procedure, as described by Baker, Moore & Spiegel (1971). The integral con- 
straint S:(M- W O )  dz = 1, 

which replaces the boundary conditions (2.8) when (2.7) is used, can be treated 
similarly. 

Sequences of steady solutions were computed by varying one of the para- 
meters defining the problem, for example R. Given two neighbouring solutions, 
we projected linearly to a new value of R to obtain an initial estimate for the 
Newton-Raphson iteration of a third solution. In view of the almost self-similar 
nature of the solutions, we found it sufficient merely to project themesh-stretching 
function and the amplitudes of the solutions, while retaining the functional 
forms of the fields in 6 space. This projection is not necessary to obtain con- 
vergence, but it does permit one to take larger jumps in the parameter which is 
being varied. For example, it is possible to project half a decade or more in R 
over the whole range from about lo3 to loz5 when a = 1, u = 1 and C = 6-4. 
Smaller increments were usually taken in surveys of the other parameters, so 
that the curves presented in this paper could be adequately resolved. Fully 
converged solutions are obtained after only six to eight iterations in this 
quadratically convergent scheme, requiring of the order of 4 s (with M = 300) 
of IBM 360/95 machine time. The results presented in this paper are based 
upon several thousand distinct solutions surveying the R, a ,  u, C parameter 
space. Several independently written programs produced indistinguishable 
results. 

Appendix B. Comparison between numerical and asymptotic solutions 
To test the accuracy of the numerical solutions we compare them with the 

asymptotic results for R -+ co. Estimates of truncation errors are rarely precise. 
Often we used the steady form of the mean energy equation (2.6) instead of its 
integral, then constructed N ( z )  = - d p / d z  + WO and tested it for constancy : 
for R = lo6 (a  = 1, C = 6-4, u = 1) the relative variation in N was less than 

for R < 10z2 it could be kept below 4% if 600 mesh points were used, and 
for our solution at R = loz5 it  was about 4%. However, constancy of N pro- 



28 J .  Toomre, D. 0. Gough and E .  A .  Spiegel 

0.8 

0.6 

0.4 

0.2 

0 1 2 3 4 5 6 

5 
FIGURE 12. The numerical velocity and temperature fields in the lower boundary layer for 
R = 1015 and 1020 are compared with the results of the asymptotic analysis (as R -+ co). 
Here a = 1, C = 6 4 ,  Q = 1. The vertical-velocity amplitude function W has been scaled 
to become x, the fluctuating temperature 0 to becomef, while remains the usual mean 
temperature field; all are shown as functions of the lower-boundary-layer variable 6, in 
the manner of figure 1 in I. The agreement between the numerical and asymptotic solutions 
improves with increasing Rayleigh number. 

vides only a rather insensitive measure of the reliability of our numerical 
schemes. Without a comparison with the asymptotic solutions in their common 
regions of validity, we would have less confidence in the numerical solutions. 

The most obvious comparisons to  make are between the values of N calcu- 
lated by the two methods. For R in the range 1010-1025, a = 1 ,  CT = 1 and 
C = 6-4, the numerical and asymptotic solutions agree to  within 3%. Com- 
parisons are also made in figures 2 and 9, which show the dependence of N on a 
and v. The value of k' was not calculated in I by solving the upper-boundary- 
layer equation, It was rather evaluated here from the numerical solutions with 
C = 6-1, a = 1 and R in the range 1016-1025 using (3.4), which gave k' = 1-73 
to within 1 % at c = 1. Comparisons of solutions with C = 0, and with C = 6-4 
subject to free boundary conditions, give similar agreement. 

The Nusselt number is a relatively insensitive measure of the accuracy of 
the solutions, and a more detailed comparison between the asymptotic and the 
numerical results is desirable. We also compared the dependences on R of 
Wmax, the maximum of W(z) ,  and and Om,,,, the maxima of O(z) in the 
lower and upper boundary layers respectively (for C =i= 0). The dependence of 
W,, on R is hardly distinguishable from R% (In R ) A  for R above about 1O1O (we 
could not compare absolute magnitudes because we have not integrated the 
asymptotic interior equation). However the slope of Om,,, attains only 90 % of 
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its asymptotic value by R = 1020. At this value of R, Om,, is not yet constant, 
since the approach to the asymptotic regime is very slow. The approach of the 
thickness of the lower boundary layer to  8, N 3 (R In It)-* is also slow. The con- 
stant ratio OmaX2/z = 0.415 is achieved to within 1 % by about R = 1012, and 
the asymptotic relation between the thickness of the upper and lower boundary 
layers (measured as the distance from the 0 maxima to the nearest boundary), 
namely 8, - 1.5 8t (In 6;1)-*, is satisfied to  within 1 % for R > lo5. 

The spatial structure of the velocity and temperature fields at  large R is given 
in figure 12. Here are shown (G/cr)lN-lW, (a/C)&O and - N-l dF/dz in the lower 
boundary layer at  various values of R, and the corresponding asymptotic 
boundary-layer solutions x, f and of I. They are plotted with respect to a 
uniformly stretched independent variable E = (a/C)&Nx, the same co-ordinate 
as is used in figure 1 of I. 

Some comparison between the numerical and asymptotic dependences of N 
upon a and C at  large R is provided in figures 2 and 8. Figure 10 shows that the 
a dependence of N - 1 a t  low cr and moderate R is qualitatively similar to the 
form predicted by the asymptotic analysis. The quadratic cr dependence of 
N -  1 at low cr is accurately reproduced at  all R (see figure 9) but the constant 
of proportionality deviates by more than 1 % from its asymptotic value unless 
R 2 109. 

Appendix C. Variable transport coefficients 
The entire study up to  this point has been devoted to representing the motion 

of an ideal fluid whose molecular transport coefficients are constant. It is not 
difficult, however, to extend our treatment to allow for variable physical pro- 
perties of the fluid. 

FIGURE 13. Variation of the Nusselt number N with the degree of temperature dependence 
of the shear viscosity ,u and the thermal conductivity K, as in (C 1) and (C 2). The curve 
labelled Fp has ,u varying and K constant, i.e. rK = 0, and shows N plotted against rP. 
The curve marked rK has K varying and ,u constant, i.e. = 0. All solutions are for 
R = lo6, Q = 1, C = 6-6 and u = 1. 
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For illustrative purposes we present here some solutions in which either the 
shear viscosity ,u or the thermal conductivity K has been allowed to  vary with 
mean temperature according to  the law 

or 

where the gradients rP and are constant. The dependence upon the tempera- 
ture fluctuations was neglected, because the variation in @ is less than that in 
F, but with a little more labour (2.4)-(2.6) could have been modified t,o include it. 

Figure 13 illustrates the behaviour of the Nusselt number as either rB or 
FSr varies. The Rayleigh number R and Prandtl number c are defined using the 
values of ,u and I< at p = +. The solutions have W ,  0 > 0;  solutions with 
negative velocity and temperature amplitudes can be derived from them by 
making the transformation (2.11) and changing the signs of rP and rK.  Note 
that when K varies in the simple way (C 2 )  the heat transport in the conduction 
state is independent of I?,, so there is no ambiguity in the definition of N .  
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